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Quiet direct simulation of Eulerian fluids
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The direct simulation Monte Carlo method of modeling fluids requires sampling one or more random
variables every time step for each particle. In this paper a “quiet Monte Carlo” technique is proposed that
eliminates the random sampling and the noise it produces by deterministically generating a small number of
computational particles. The technique is applied to particle equations of motion appropriate for modeling an
Eulerian fluid. Results indicate that strong one- and two-dimensional shocks with large dynamic ranges are
accurately represented with only a few particles per cell.
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The direct simulation Monte Carlo or DSMC method of locities per cell and thus even larger spatial stencils. We find,
numerically modeling rarefied gases is said to employ comand demonstrate below, that quiet DSMC is a possible alter-
putational particles that free-stream on a fixed grid for a fi-native to compressible LBM that uses fewer partidiigpi-
nite interval and then, instantaneously and simultaneoushgally 2—5 per ce), is not limited in dynamical range, and is
suffer a random scattering collision. As such, DSMC hasstraightforward to implement in multidimensions.
been used since 1963 by Bifd] and otherg2] to model In what follows we motivate the quiet DSMC methpd; a
high Knudsen number gas flows, in which mean free pathgiore formal derivation can be found elsewhgté]. Quiet
and collision times must be resolved. Pull8] adapted the DSMC uses Gaussian-Hermite quadrature weights and ab-
DSMC algorithm to Eulerian fluids by requiring the scatteredscissas of the integralf”..(2m) Y%exp(-v%2)f(v)dv,
particle velocities to be drawn from a local Maxwellian. In wheref(v) is an arbitrary function to represent the effect of
either application, rarefied gases or ideal fluids, a randoniandomly drawing numbers from the probability density
number generator is used to advance particle positions ar(v) = (2m) ~*%exp(—v%2). According to the theory of
velocities. Although successful, these simulations are comGaussian quadratuff@] the J-point quadrature approxima-
putationally expensive because they generate statistical noigen
that can be controlled only by using many particles or by
averaging multiple runs. We propose a method, which we
call “quiet DSMC,” for doing DSMC dynamics of ideal flu-
ids without calling random numbers—thereby eliminating all o 2w
statistical noise and the need for averaging.

The formalism underlying the quiet DSMC approach t0pecomes exact whef(v) is a linear combination of the
simulation can be applied to any system that can be de- q polynomialsu®,vt, ... p2~Lif the weightsw; and ab-
scribed by a Fokker-Planck kinetic equation, including, forscissasqj are chosen according to standard prescription.
example, radiation, nel_Jtron, and_ charged _part|cle transporﬁ:hus, in place of a single random realization of the unit
Here we focus on fluid dynamics. In this context quiet,,rmal random variablal(0,1), i.e., the random number de-
DSMC is closely related to the lattice Boltzmann methodsjeq by the probability densitp(v) = (27) ~ Y2expv?/2)
(LBM) [4]. Conventional LBM schemes have two strong 5 j ngint quiet DSMC calculation would creaedetermin-

limitations that make them unsuitable for modeling trans-igyic realizations oN(0,1) with weightsw; and abscissa val-
sonic and supersonic flows: They are limited to low MaChuesq- with j=1 J. Then ther=OJ1 2—1 mo-

numbers, and they are atherm#he models either do not
have the correct sound speed/temperature relations or th

have unfavorable stability propertleOne of the most re- Normal random variables arise naturally in particle simu-

cently conceived LBM modelgb] is able to treat high Mach jations of fluid behavior because the fluid particle coordi-

number dynamics, but at the cost of requiring a large numbenates are governed by stochastic differential equations of
of particles. In this model the local Maxwellian distributions 9 y a

of particles are represented by choosing the particles’veloc'mouon' For instance, the ~one-dimensional Ornstein-

| .
ties so that each particle travels an integral number of cells irHJhIenbeck(OU) process equations

one time step. This eliminates numerical diffusion, but at the

cost of requiring a large number of velocities, e.g., 11 veloci- dx=v,dt, (23
ties per cell per spatial dimension to model low Mach num-
ber shocks. As a consequence, properties of the fluid in one
cell are distributed over a “spatial stencil” of the ten nearest
cells (in one dimensioj) and contact surfaces are “smeared
out” over a distance of the order of the stencil size. Higherdescribe the random dynamics of a particle of ntagelax-
Mach number dynamics would require larger numbers of veing at a ratey to the local fluid velocityu and temperature

212 J

o e f(v)dv~ 3], wif(q)) (1)

ments of form[” _(27)  Y2exp(—v%2)v"dv are represented
actly and without fluctuation bR} ;] .

dvy=— y(vy—u)dt+\2yo;dtN(0,1) (2b)
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kT= mag. The velocity equation(2b) is solved [7] by  transport and thermalization operations are conceptually and
v(At)=u+e "Yv,—u)+o,(1—e "H2N(0,1) given computationally distinct, they proceed over the same interval
initial condition v,(0)=v,,. In the thermalization limit, At.
vAt>1p,(At) becomes the random variahler o-,N(0,1) The quiet DSMC algorithm proposed can be described
drawn from a local Maxwellian. The OU process equationswith three steps that together evolve the fluid forward by a
of motion (2) are equivalently described by a Fokker-Plancktime At. To evolve the fluid to a timéwe repeat these steps
kinetic equation t/At times.

(1) At every pointx; on a spatial mesh where the fluid

ap ap d 5 52 quantities p; ,u; ,aﬁi , and ¢ are known, we represent the
ot U T VR[(UX_ upl+yo, - 7p () fluid by J particles, each with position and specific internal
X energy g;=(d— 1)crfi/2. The particle masses aren;
governing the conditional probability densityp =~ =Axpiwjm Y2 and the velocities are;;=u;+\207,q;,

=p(X, vy X0, Uxo) Wherev2/2+ e is proportional to the total With j=1,... J andw; andq; the corresponding weights
particle energy and, the specific internal energjgnoring ~ nd abscissas of &point Gauss-Hermite quadraty].

translational kinetic energy in thedirection), is the same for (2) Each particle is advanced to a new positifi"=x;
all particles at each locale. Multiplying E6) by 1p,, and ~ tvjjAt. . .
v22+e and integrating overv, recovers the one-  (3) Local low-order (<2) velocity moments(i.e., the
dimensional fluid equations fluid quantitie3 are computed by linearly distributing the
masses, momenta, and energies carried by the particles onto
ap 9 the mesh.
E+ ﬁ—x(pu):O, (4a) Steps 1 and 2 perform the “tr” part of E¢5), and the “th”

part, which establishes local thermodynamic equilibrium
throughout the fluid, is effected by step 3. Thé Gauss-
Ju Ju J Hermite weights and abscissas used throughout the simula-

Pt TPUTT 5(’)05)' @D tion in step 1 may be tabulated in advance.
Distributing the particle quantities,, ,v,, ande, follows
J [ p(a?+u?) J [3pu(a?+u?) from
E 5 +pel=— & > +puUe|,
(40) mi= 2>, mW,, (6)

p
given that px(2mo?) YZ%exd —(vy—u)%(20%)]. Here p
=p(x) is the local densityu=u(x) is the x component of
the mean velocityos?=o(x) the variance ofv, ,P=po? pi:Ep Mpv p Wi @)
the pressure, anal e+ 03/2) the internal energy density. The
equation of state(e+ 03/2)= Pd/2 describes particles with 1
d degrees of freedom. A particle simulation with particle co- Ei= 2 mp(§v§+ €p
ordinates advanced each time stepby an OU process with P
a collision rate large enough so thpAt>1 ought to repro-
duce the fluid dynamics of Eq4). We adopt this approach Wherem;, p;, andE; are the mass, momentum, and energy
here. of the fluid contained in computational célland the linear

Traditionally, DSMC calculations split particle transport WeightsWy,; are defined by

and particle thermalization into two distinct operations; we .
do the same. This is possible only if the computational split- =X/ (X =Xi—1) I X1 <Xp=X
ting c_orresponds to a formal operator spl_itti[r&j of the ap- W= Xis1= X (Xi41=X)  if X <Xp<Xi11 (9)
propriate process. In fact, we split the differential OU pro-
cess(2) into a transport piece, denoted by subscript “tr” and
a thermalization piece, denoted by “th,” as follows:

Wi, ®

0 otherwise.

From these quantities the fluid densify;=2m;/(X; 1

—x;_1)], velocity (uj=p;/m;), and velocity varianc§o?,
dX det 0 2 . . . . . vl
= + . ) =(2E;—u{)/m;d] may be obtained. Linear weighting intro-
doy 0/, \=vvx—u)dt+y2yo,dtNO,1)/ duces a small amount of numerical diffusion into the model,

(5)  which has the effect of artificially smoothing the profiles of
fluid quantities. We have found that less diffusive weighting
The transport differential operator describes particle freeschemes, such as “nearest grid point” weighting, are noisy.
streaming, while the thermalization differential operator The maximum simulation time step is restricted by the
drives particle velocities towardu+o,N(0,1) without requirement that neighboring fluid elements cannot stream
changing their positions. In a fluidvhereyAt>1) this ther-  through one another without interacting. Alternatively stated,
malization is complete in one time steft. Although the because Eq2) describes an Ttprocesd 7] having constant
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FIG. 1. Continuous line: quiet DSMC simulation with four par-  FIG. 2. Continuous line: quiet DSMC simulation with four par-
ticles per cell of the Sod test problem at titte0.25. Broken line: ~ ticles per cell of the blast wave test problem of Woodward and

exact solution. The simulation used four particles per cell with 1000C0lella[14]. Broken line: exact solution. The simulation used 1000
simulation cells and a time stept=4.5x10* for a total of 555  Simulation cells with four particles per cell. The time step was cho-

time steps. The inset in pan@) shows a zoom of the region near S€n to beAt=1.4x10"° for a total of 857 time steps.

the contact discontinuity for two different simulation runs: with

1000 simulation c_ellscontinuous ling and with 4000 simulation A y1/2 [11,17 and can be reduced by making the lattice spac-

cells (dot-dashed line ing Ax smaller[see the dot-dashed line in the inset of Fig. 1
panel(a)].

parameteras and o7, the simulation particles may not, in ~ The large dynamical range of the quiet DSMC model is

one time step, move so far thabr ¢ changes appreciably. evident from a more demanding test problem—the left half

Thus, At must obey of the blast wave problem of Woodward and Colgll4] as
described in Ref[9]. The gas in a closed cavity of length
At<Ax/\/m (10) unity is assumed to have=7/5 and constant initial density

p=1.0 and velocityu=0 throughout. Initially, the pressure
varies by five orders of magnitude from the left £ 0.5,
In hot fluids Eq.(10) is somewhat more restrictive than the wherep, =1000, and to the right, whemg;=0.01. Figure 2
traditional Courant-Friedrichs-Lewy criterionA{<Ax/u) shows the propagation of the blast wave, associated contact
for hydrodynamics stabilitf13]. We stress, however, that surface, and rarefaction front after a tirhe 0.012. Again,
Eq. (10) establishes conditions for fidelity and not stability. the quiet DSMC simulation shows little noise and the shock
Since conserved quantities stay rigorously conserve@dnd rarefaction regions are captured well.
throughout the simulation, quiet DSMC is stable regardless Generalization of the method to higher dimensions is
of the size ofAt. straightforward and efficient. For each unit normal random
We demonstrate the quiet DSMC method with one- anchumberN(0,1) appearing in the multidimensional OU equa-
two-dimensional test problems. The first is the classical Sodions, one introduces a separate set of Gauss-Hermite
problem[9] in which a gas cavity of length unity is filled weights and abscissas. Two-dimensional fluid models, need-
with an ideal gas having a ratio of specific heats7/5, i.e.,  ing two unit normal random numbers, thus requifepar-
d=5. A membrane located at the midpoint of the cavityticles per grid point, and three-dimensional models require
separates two populations of gas: both at restQ), the left ~ J3. Unlike traditional DSMC, where a large number of par-
with densityp, = 1.0 and pressurg,_= 1.0 and the right with  ticles are needed in each dimension for adequate sampling of
density pg=0.125 and pressurp, =0.1. At timet=0 the the random processes, in quiet DSMds typically small
membrane breaks and the gas evolves to a configuration with~2-5). Figure 3 shows density at=1.0 from a two-
a leading shock, a contact surface, and a left rarefaction, afimensional simulation of a blast wave that evolves from
shown in Fig. 1. The continuous curves are quiet DSMCinitial conditions of uniform densityp=1 and velocityu
solutions to the hydrodynamics equations and the dotteeg=0(y=5/3), and with a small, circular region of initially
lines are the solutions from an exact Riemann so|i€}. higher pressureP;,=1.0, P,,~=0.01. No asymmetry from
The quiet DSMC calculation has negligible noise and modelgrid imprinting is evident.
the shock and rarefaction well. However, diffusion smears Quiet DSMC fluid calculations have all the advantages of
out the contact discontinuity over many-@5) simulation traditional DSMC simulations, and fewer disadvantages. Ad-
cells. The diffusion is a function of the particle weighting vantages include unconditional stability; mass, momentum,
algorithm. The effective diffusion coefficient scales like and energy conservation to machine precision; flexibility,
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1.0
0.8

(~2-5) patrticles per cell. All operations in a quiet DSMC
fluid calculation are local, so the method would run effi-
ciently and with little message passing on massively parallel
computing architectures. Moreover, since the number of par-
ticles created per simulation cell is known at the onset of the
0.2 simulation, “load balancing,” or ensuring that each proces-
0.0 sor in a parallel computer operates near maximum efficiency,
0.00.2:040.610.8 1.0 can be easily accomplished.
* The central themes of quiet DSMC, namé#y replacing
a continuum system with equivalent stochastic differential

0.6
0.4

3.0

2 20f® /L equationg SDES of particle motion,(b) solving these SDEs
g 10f -~ quietly using a deterministic sampling of the random num-
%00 01 02 03 04 05 bers, andc) remaking particles every time step from quan-
radius tities gathered on the grid, have applicability beyond

Eulerian hydrodynamics. Step) may be performed for any
blast wave from an azimuthally symmetric initial pressure profilesys'[em V\_”th _dynamlc_s that can be de_scrlbed by a Fokker-
(dashed curve Panel(b): density vs radius for horizontdtircles Planck kmenc equat|c_)r[7]. The resulting ,SDES aré ex-
and 45° diagonalsquarescuts across the evolved density profile. Pressed in terms of unit normal random variaig®,1), for
The profiles are essentially identical and in good comparison witvhich stepgb) and(c) may be applied. Recently, the authors
density from a one-dimensional, first-order Godunov, Roe approxihave used the quiet DSMC technique with success in the
mate Riemann solvefsolid line). The Cartesian computational Simulation of diffusion, radiation transport, magnetohydro-
mesh used 200200 grid cells and % 4 particles per cell, and the dynamics, and kinetic plasma and rarefied gas middid 2.
simulation ran for 285 time steps. Owing to the ubiquity of Fokker-Planck equations in math-
ematical physics and to the broad use of Monte Carlo tech-
since complicated boundary conditions and geometries ar@iques to simulate these systems, we feel that quiet DSMC
treated as simple conditions on particle trajectories; and néchnique may point to a line of thinking that would improve
artificial viscosity required to get convergent results. As hassimulation capabilities in many other venues.
been recognized by many authdds], dynamic control of
the number of simulation particles can dramatically improve This work was performed under the auspices of the
dynamical range; in quiet DSMC, the aggressive remappindJnited States Department of Energy and supported by the
of fluid quantities onto the particles every time step allowsLANL Laboratory Director’s Research and Development
for arbitrary dynamic range, and the results are smooth, exA . DRD) program. We thank Rod Mason for helpful discus-
hibiting essentially no statistical noise even with only a fewsions.

FIG. 3. Panela): two-dimensional quiet DSMC simulation of a
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