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Quiet direct simulation of Eulerian fluids
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The direct simulation Monte Carlo method of modeling fluids requires sampling one or more random
variables every time step for each particle. In this paper a ‘‘quiet Monte Carlo’’ technique is proposed that
eliminates the random sampling and the noise it produces by deterministically generating a small number of
computational particles. The technique is applied to particle equations of motion appropriate for modeling an
Eulerian fluid. Results indicate that strong one- and two-dimensional shocks with large dynamic ranges are
accurately represented with only a few particles per cell.
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The direct simulation Monte Carlo or DSMC method
numerically modeling rarefied gases is said to employ co
putational particles that free-stream on a fixed grid for a
nite interval and then, instantaneously and simultaneou
suffer a random scattering collision. As such, DSMC h
been used since 1963 by Bird@1# and others@2# to model
high Knudsen number gas flows, in which mean free pa
and collision times must be resolved. Pullin@3# adapted the
DSMC algorithm to Eulerian fluids by requiring the scatter
particle velocities to be drawn from a local Maxwellian.
either application, rarefied gases or ideal fluids, a rand
number generator is used to advance particle positions
velocities. Although successful, these simulations are c
putationally expensive because they generate statistical n
that can be controlled only by using many particles or
averaging multiple runs. We propose a method, which
call ‘‘quiet DSMC,’’ for doing DSMC dynamics of ideal flu-
ids without calling random numbers—thereby eliminating
statistical noise and the need for averaging.

The formalism underlying the quiet DSMC approach
simulation can be applied to any system that can be
scribed by a Fokker-Planck kinetic equation, including,
example, radiation, neutron, and charged particle transp
Here we focus on fluid dynamics. In this context qu
DSMC is closely related to the lattice Boltzmann meth
~LBM ! @4#. Conventional LBM schemes have two stron
limitations that make them unsuitable for modeling tran
sonic and supersonic flows: They are limited to low Ma
numbers, and they are athermal~the models either do no
have the correct sound speed/temperature relations or
have unfavorable stability properties!. One of the most re-
cently conceived LBM models@5# is able to treat high Mach
number dynamics, but at the cost of requiring a large num
of particles. In this model the local Maxwellian distribution
of particles are represented by choosing the particles’ vel
ties so that each particle travels an integral number of cell
one time step. This eliminates numerical diffusion, but at
cost of requiring a large number of velocities, e.g., 11 velo
ties per cell per spatial dimension to model low Mach nu
ber shocks. As a consequence, properties of the fluid in
cell are distributed over a ‘‘spatial stencil’’ of the ten neare
cells ~in one dimension!, and contact surfaces are ‘‘smear
out’’ over a distance of the order of the stencil size. High
Mach number dynamics would require larger numbers of
1063-651X/2002/65~5!/055302~4!/$20.00 65 0553
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locities per cell and thus even larger spatial stencils. We fi
and demonstrate below, that quiet DSMC is a possible a
native to compressible LBM that uses fewer particles~typi-
cally 2–5 per cell!, is not limited in dynamical range, and i
straightforward to implement in multidimensions.

In what follows we motivate the quiet DSMC method;
more formal derivation can be found elsewhere@12#. Quiet
DSMC uses Gaussian-Hermite quadrature weights and
scissas of the integral*2`

` (2p)21/2exp(2v2/2) f (v)dv,
where f (v) is an arbitrary function to represent the effect
randomly drawing numbers from the probability dens
p(v)5(2p)21/2exp(2v2/2). According to the theory of
Gaussian quadrature@6# the J-point quadrature approxima
tion

E
2`

` e2v2/2

A2p
f ~v !dv'(

j 51

J

wj f ~qj ! ~1!

becomes exact whenf (v) is a linear combination of the 2J
21 polynomialsv0,v1, . . . ,v2J21 if the weightswj and ab-
scissasqj are chosen according to standard prescripti
Thus, in place of a single random realization of the u
normal random variableN(0,1), i.e., the random number de
fined by the probability densityp(v)5(2p)21/2exp(2v2/2),
a J-point quiet DSMC calculation would createJ determin-
istic realizations ofN(0,1) with weightswj and abscissa val
ues qj with j 51, . . . ,J. Then ther 50,1, . . . ,2J21 mo-
ments of form*2`

` (2p)21/2exp(2v2/2)v rdv are represented
exactly and without fluctuation by( j 51

J wjqj
r .

Normal random variables arise naturally in particle sim
lations of fluid behavior because the fluid particle coor
nates are governed by stochastic differential equations
motion. For instance, the one-dimensional Ornste
Uhlenbeck~OU! process equations

dx5vxdt, ~2a!

dvx52g~vx2u!dt1A2gsv
2dtN~0,1! ~2b!

describe the random dynamics of a particle of massm relax-
ing at a rateg to the local fluid velocityu and temperature
©2002 The American Physical Society02-1
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kT5msv
2 . The velocity equation~2b! is solved @7# by

vx(Dt)5u1e2gDt(vx02u)1sv(12e2gDt)1/2N(0,1) given
initial condition vx(0)5vx0. In the thermalization limit,
gDt@1,vx(Dt) becomes the random variableu1svN(0,1)
drawn from a local Maxwellian. The OU process equatio
of motion ~2! are equivalently described by a Fokker-Plan
kinetic equation

]p

]t
1vx

]p

]x
5g

]

]vx
@~vx2u!p#1gsv

2 ]2

]vx
2 p ~3!

governing the conditional probability density p
5p(x,vx ;x0 ,vx0) wherevx

2/21e is proportional to the tota
particle energy ande, the specific internal energy~ignoring
translational kinetic energy in thex direction!, is the same for
all particles at each locale. Multiplying Eq.~3! by 1,vx , and
vx

2/21e and integrating over vx recovers the one
dimensional fluid equations

]r

]t
1

]

]x
~ru!50, ~4a!

r
]u

]t
1ru

]u

]x
52

]

]x
~rsv

2!, ~4b!

]

]t Fr~sv
21u2!

2
1reG52

]

]x F3ru~sv
21u2!

2
1rueG ,

~4c!

given that p}(2psv
2)21/2exp@2(vx2u)2/(2sv

2)#. Here r
5r(x) is the local density,u5u(x) is the x component of
the mean velocity,sv

25sv
2(x) the variance ofvx ,P5rsv

2

the pressure, andr(e1sv
2/2) the internal energy density. Th

equation of stater(e1sv
2/2)5Pd/2 describes particles with

d degrees of freedom. A particle simulation with particle c
ordinates advanced each time stepDt by an OU process with
a collision rate large enough so thatgDt@1 ought to repro-
duce the fluid dynamics of Eq.~4!. We adopt this approach
here.

Traditionally, DSMC calculations split particle transpo
and particle thermalization into two distinct operations;
do the same. This is possible only if the computational sp
ting corresponds to a formal operator splitting@8# of the ap-
propriate process. In fact, we split the differential OU pr
cess~2! into a transport piece, denoted by subscript ‘‘tr’’ an
a thermalization piece, denoted by ‘‘th,’’ as follows:

S dx

dvx
D 5S vxdt

0 D
tr

1S 0

2g~vx2u!dt1A2gsv
2dtN~0,1!

D
th

.

~5!

The transport differential operator describes particle fr
streaming, while the thermalization differential opera
drives particle velocities towardu1svN(0,1) without
changing their positions. In a fluid~wheregDt@1) this ther-
malization is complete in one time stepDt. Although the
05530
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transport and thermalization operations are conceptually
computationally distinct, they proceed over the same inter
Dt.

The quiet DSMC algorithm proposed can be describ
with three steps that together evolve the fluid forward by
time Dt. To evolve the fluid to a timet we repeat these step
t/Dt times.

~1! At every pointxi on a spatial mesh where the flui
quantitiesr i ,ui ,sv i

2 , and e i are known, we represent th
fluid by J particles, each with positionxi and specific internal
energy « i5(d21)sv i

2 /2. The particle masses aremi j

5Dxr iwjp
21/2 and the velocities arev i j 5ui1A2sv i

2 qj ,
with j 51, . . . ,J and wj and qj the corresponding weight
and abscissas of aJ-point Gauss-Hermite quadrature@6#.

~2! Each particle is advanced to a new positionxi j
new5xi

1v i j Dt.
~3! Local low-order (<2) velocity moments~i.e., the

fluid quantities! are computed by linearly distributing th
masses, momenta, and energies carried by the particles
the mesh.
Steps 1 and 2 perform the ‘‘tr’’ part of Eq.~5!, and the ‘‘th’’
part, which establishes local thermodynamic equilibriu
throughout the fluid, is effected by step 3. The 2J Gauss-
Hermite weights and abscissas used throughout the sim
tion in step 1 may be tabulated in advance.

Distributing the particle quantitiesmp ,vp , andep follows
from

mi5(
p

mpWpi , ~6!

pi5(
p

mpvpWpi , ~7!

Ei5(
p

mpS 1

2
vp

21epDWpi , ~8!

wheremi , pi , andEi are the mass, momentum, and ener
of the fluid contained in computational celli, and the linear
weightsWpi are defined by

Wpi5H ~xp2xi 21!/~xi2xi 21! if xi 21,xp<xi

~xi 112xp!/~xi 112xi ! if xi,xp<xi 11

0 otherwise.

~9!

From these quantities the fluid density@r i52mi /(xi 11

2xi 21)#, velocity (ui5pi /mi), and velocity variance@sv i
2

5(2Ei2ui
2)/mid# may be obtained. Linear weighting intro

duces a small amount of numerical diffusion into the mod
which has the effect of artificially smoothing the profiles
fluid quantities. We have found that less diffusive weighti
schemes, such as ‘‘nearest grid point’’ weighting, are noi

The maximum simulation time step is restricted by t
requirement that neighboring fluid elements cannot stre
through one another without interacting. Alternatively stat
because Eq.~2! describes an Itoˆ process@7# having constant
2-2
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parametersu and sv
2 , the simulation particles may not, i

one time step, move so far thatu or sv
2 changes appreciably

Thus,Dt must obey

Dt&Dx/Asv
21u2. ~10!

In hot fluids Eq.~10! is somewhat more restrictive than th
traditional Courant-Friedrichs-Lewy criterion (Dt<Dx/u)
for hydrodynamics stability@13#. We stress, however, tha
Eq. ~10! establishes conditions for fidelity and not stabilit
Since conserved quantities stay rigorously conser
throughout the simulation, quiet DSMC is stable regardl
of the size ofDt.

We demonstrate the quiet DSMC method with one- a
two-dimensional test problems. The first is the classical S
problem @9# in which a gas cavity of length unity is filled
with an ideal gas having a ratio of specific heatsg57/5, i.e.,
d55. A membrane located at the midpoint of the cav
separates two populations of gas: both at rest (v50), the left
with densityrL51.0 and pressurepL51.0 and the right with
density rR50.125 and pressurepL50.1. At time t50 the
membrane breaks and the gas evolves to a configuration
a leading shock, a contact surface, and a left rarefaction
shown in Fig. 1. The continuous curves are quiet DSM
solutions to the hydrodynamics equations and the do
lines are the solutions from an exact Riemann solver@10#.
The quiet DSMC calculation has negligible noise and mod
the shock and rarefaction well. However, diffusion sme
out the contact discontinuity over many (;25) simulation
cells. The diffusion is a function of the particle weightin
algorithm. The effective diffusion coefficient scales lik

FIG. 1. Continuous line: quiet DSMC simulation with four pa
ticles per cell of the Sod test problem at timet50.25. Broken line:
exact solution. The simulation used four particles per cell with 10
simulation cells and a time stepDt54.531024 for a total of 555
time steps. The inset in panel~a! shows a zoom of the region nea
the contact discontinuity for two different simulation runs: wi
1000 simulation cells~continuous line! and with 4000 simulation
cells ~dot-dashed line!.
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Dx1/2 @11,12# and can be reduced by making the lattice sp
ing Dx smaller@see the dot-dashed line in the inset of Fig
panel~a!#.

The large dynamical range of the quiet DSMC model
evident from a more demanding test problem—the left h
of the blast wave problem of Woodward and Colella@14# as
described in Ref.@9#. The gas in a closed cavity of lengt
unity is assumed to haveg57/5 and constant initial density
r51.0 and velocityu50 throughout. Initially, the pressur
varies by five orders of magnitude from the left ofx50.5,
wherepL51000, and to the right, wherepR50.01. Figure 2
shows the propagation of the blast wave, associated con
surface, and rarefaction front after a timet50.012. Again,
the quiet DSMC simulation shows little noise and the sho
and rarefaction regions are captured well.

Generalization of the method to higher dimensions
straightforward and efficient. For each unit normal rando
numberN(0,1) appearing in the multidimensional OU equ
tions, one introduces a separate set of Gauss-Her
weights and abscissas. Two-dimensional fluid models, ne
ing two unit normal random numbers, thus requireJ2 par-
ticles per grid point, and three-dimensional models requ
J3. Unlike traditional DSMC, where a large number of pa
ticles are needed in each dimension for adequate samplin
the random processes, in quiet DSMCJ is typically small
(;2 –5). Figure 3 shows density att51.0 from a two-
dimensional simulation of a blast wave that evolves fro
initial conditions of uniform densityr51 and velocityu
50(g55/3), and with a small, circular region of initially
higher pressure:Pin51.0, Pout50.01. No asymmetry from
grid imprinting is evident.

Quiet DSMC fluid calculations have all the advantages
traditional DSMC simulations, and fewer disadvantages. A
vantages include unconditional stability; mass, momentu
and energy conservation to machine precision; flexibil

0

FIG. 2. Continuous line: quiet DSMC simulation with four pa
ticles per cell of the blast wave test problem of Woodward a
Colella @14#. Broken line: exact solution. The simulation used 10
simulation cells with four particles per cell. The time step was ch
sen to beDt51.431025 for a total of 857 time steps.
2-3
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since complicated boundary conditions and geometries
treated as simple conditions on particle trajectories; and
artificial viscosity required to get convergent results. As h
been recognized by many authors@15#, dynamic control of
the number of simulation particles can dramatically impro
dynamical range; in quiet DSMC, the aggressive remapp
of fluid quantities onto the particles every time step allo
for arbitrary dynamic range, and the results are smooth,
hibiting essentially no statistical noise even with only a fe

FIG. 3. Panel~a!: two-dimensional quiet DSMC simulation of
blast wave from an azimuthally symmetric initial pressure pro
~dashed curve!. Panel~b!: density vs radius for horizontal~circles!
and 45° diagonal~squares! cuts across the evolved density profil
The profiles are essentially identical and in good comparison w
density from a one-dimensional, first-order Godunov, Roe appr
mate Riemann solver~solid line!. The Cartesian computationa
mesh used 2003200 grid cells and 434 particles per cell, and the
simulation ran for 285 time steps.
l
n,

id

05530
re
o
s

e
g

s
x-

(;2 –5) particles per cell. All operations in a quiet DSM
fluid calculation are local, so the method would run ef
ciently and with little message passing on massively para
computing architectures. Moreover, since the number of p
ticles created per simulation cell is known at the onset of
simulation, ‘‘load balancing,’’ or ensuring that each proce
sor in a parallel computer operates near maximum efficien
can be easily accomplished.

The central themes of quiet DSMC, namely~a! replacing
a continuum system with equivalent stochastic differen
equations~SDEs! of particle motion,~b! solving these SDEs
quietly using a deterministic sampling of the random nu
bers, and~c! remaking particles every time step from qua
tities gathered on the grid, have applicability beyo
Eulerian hydrodynamics. Step~a! may be performed for any
system with dynamics that can be described by a Fokk
Planck kinetic equation@7#. The resulting SDEs are ex
pressed in terms of unit normal random variablesN(0,1), for
which steps~b! and~c! may be applied. Recently, the autho
have used the quiet DSMC technique with success in
simulation of diffusion, radiation transport, magnetohydr
dynamics, and kinetic plasma and rarefied gas media@11,12#.
Owing to the ubiquity of Fokker-Planck equations in mat
ematical physics and to the broad use of Monte Carlo te
niques to simulate these systems, we feel that quiet DS
technique may point to a line of thinking that would improv
simulation capabilities in many other venues.

This work was performed under the auspices of
United States Department of Energy and supported by
LANL Laboratory Director’s Research and Developme
~LDRD! program. We thank Rod Mason for helpful discu
sions.
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